找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
热搜: 活动 交友 discuz
查看: 170|回复: 1

套料遗传算法(Bin Packing Genetic Algorithm)

[复制链接]

0

主题

0

回帖

26

积分

管理员

积分
26
发表于 2024-3-6 12:50:51 | 显示全部楼层 |阅读模式
  1. 套料遗传算法(Bin Packing Genetic Algorithm)是一种用于解决套料问题的优化算法。套料问题是指将一组物品尽可能有效地放入一组容器中,使得容器的利用率最高。
  2. 以下是一个简单的套料遗传算法的C++代码示例:
  3. cpp
  4. #include <iostream>
  5. #include <vector>
  6. #include <algorithm>
  7. #include <random>
  8. // 定义物品结构体
  9. struct Item {
  10.     int id;
  11.     int size;
  12. };
  13. // 定义容器结构体
  14. struct Bin {
  15.     int id;
  16.     int capacity;
  17.     std::vector<Item> items;
  18. };
  19. // 遗传算法参数
  20. const int POPULATION采用SIZE = 100; // 种群大小
  21. const int MAX采用GENERATIONS = 100; // 最大迭代次数
  22. const double MUTATION采用RATE = 0.1; // 变异率
  23. // 随机数生成器
  24. std::random采用device rd;
  25. std::mt19937 gen(rd());
  26. std::uniform采用real采用distribution<> dis(0.0, 1.0);
  27. // 计算容器利用率
  28. double calculateFitness(const Bin& bin) {
  29.     int totalSize = 0;
  30.     for (const auto& item : bin.items) {
  31.         totalSize += item.size;
  32.     }
  33.     return static采用cast<double>(totalSize) / bin.capacity;
  34. }
  35. // 初始化种群
  36. std::vector<Bin> initializePopulation(int numBins, const std::vector<Item>& items) {
  37.     std::vector<Bin> population;
  38.     for (int i = 0; i < POPULATION采用SIZE; ++i) {
  39.         Bin bin;
  40.         bin.id = i;
  41.         bin.capacity = numBins;
  42.         population.push采用back(bin);
  43.     }
  44.     return population;
  45. }
  46. // 选择操作
  47. std::vector<Bin> selection(const std::vector<Bin>& population) {
  48.     std::vector<Bin> selectedPopulation;
  49.     for (int i = 0; i < POPULATION采用SIZE; ++i) {
  50.         int index1 = static采用cast<int>(dis(gen) * POPULATION采用SIZE);
  51.         int index2 = static采用cast<int>(dis(gen) * POPULATION采用SIZE);
  52.         selectedPopulation.push采用back(population[index1].items.size() > population[index2].items.size() ? population[index1] : population[index2]);
  53.     }
  54.     return selectedPopulation;
  55. }
  56. // 交叉操作
  57. std::vector<Bin> crossover(const std::vector<Bin>& population) {
  58.     std::vector<Bin> offspringPopulation;
  59.     for (int i = 0; i < POPULATION采用SIZE; i += 2) {
  60.         Bin parent1 = population[i];
  61.         Bin parent2 = population[i + 1];
  62.         Bin offspring1 = parent1;
  63.         Bin offspring2 = parent2;
  64.         int crossoverPoint = static采用cast<int>(dis(gen) * parent1.items.size());
  65.         offspring1.items.insert(offspring1.items.end(), parent2.items.begin() + crossoverPoint, parent2.items.end());
  66.         offspring2.items.insert(offspring2.items.end(), parent1.items.begin() + crossoverPoint, parent1.items.end());
  67.         offspringPopulation.push采用back(offspring1);
  68.         offspringPopulation.push采用back(offspring2);
  69.     }
  70.     return offspringPopulation;
  71. }
  72. // 变异操作
  73. void mutation(std::vector<Bin>& population) {
  74.     for (auto& bin : population) {
  75.         for (auto& item : bin.items) {
  76.             if (dis(gen) < MUTATION采用RATE) {
  77.                 item.size = static采用cast<int>(dis(gen) * bin.capacity);
  78.             }
  79.         }
  80.     }
  81. }
  82. // 打印最优解
  83. void printBestSolution(const std::vector<Bin>& population) {
  84.     double bestFitness = 0.0;
  85.     const Bin* bestBin = nullptr;
  86.     for (const auto& bin : population) {
  87.         double fitness = calculateFitness(bin);
  88.         if (fitness > bestFitness) {
  89.             bestFitness = fitness;
  90.             bestBin = &bin;
  91.         }
  92.     }
  93.     std::cout << "Best solution: ";
  94.     if (bestBin != nullptr) {
  95.         for (const auto& item : bestBin->items) {
  96.             std::cout << item.id << " ";
  97.         }
  98.     }
  99.     std::cout << std::endl;
  100. }
  101. int main() {
  102.     // 初始化物品
  103.     std::vector<Item> items = {
  104.         {1, 10},
  105.         {2, 20},
  106.         {3, 30},
  107.         // ...
  108.     };
  109.     // 初始化种群
  110.     std::vector<Bin> population = initializePopulation(100, items);
  111.     // 迭代
  112.     for (int generation = 0; generation < MAX采用GENERATIONS; ++generation) {
  113.         // 选择
  114.         std::vector<Bin> selectedPopulation = selection(population);
  115.         // 交叉
  116.         std::vector<Bin> offspringPopulation = crossover(selectedPopulation);
  117.         // 变异
  118.         mutation(offspringPopulation);
  119.         // 更新种群
  120.         population = offspringPopulation;
  121.         // 输出最优解
  122.         printBestSolution(population);
  123.     }
  124.     return 0;
  125. }
  126. 这段代码实现了一个简单的套料遗传算法,其中包括初始化种群、选择、交叉、变异等操作,并输出每一代的最优解。你可以根据实际需求进行修改和扩展。
复制代码

0

主题

0

回帖

26

积分

管理员

积分
26
 楼主| 发表于 2024-3-6 16:11:30 | 显示全部楼层
  1. #include <iostream>
  2. #include <vector>
  3. #include <algorithm>
  4. #include <random>
  5. // 定义材料的结构体
  6. struct Material {
  7.     int length;
  8.     int demand;
  9. };
  10. // 定义染色体的结构体
  11. struct Chromosome {
  12.     std::vector<int> genes;
  13.     int fitness;
  14. };
  15. // 初始化种群
  16. std::vector<Chromosome> initializePopulation(int populationSize, int geneSize) {
  17.     std::vector<Chromosome> population;
  18.     for (int i = 0; i < populationSize; i++) {
  19.         Chromosome chromosome;
  20.         chromosome.genes.resize(geneSize);
  21.         for (int j = 0; j < geneSize; j++) {
  22.             chromosome.genes[j] = rand() % 2; // 随机生成0或1
  23.         }
  24.         chromosome.fitness = 0;
  25.         population.push采用back(chromosome);
  26.     }
  27.     return population;
  28. }
  29. // 计算染色体的适应度
  30. void calculateFitness(Chromosome& chromosome, const std::vector<Material>& materials, int targetLength) {
  31.     int totalLength = 0;
  32.     int totalDemand = 0;
  33.     for (int i = 0; i < chromosome.genes.size(); i++) {
  34.         if (chromosome.genes[i] == 1) {
  35.             totalLength += materials[i].length;
  36.             totalDemand += materials[i].demand;
  37.         }
  38.     }
  39.     chromosome.fitness = (totalLength >= targetLength) ? totalDemand : 0;
  40. }
  41. // 选择操作
  42. std::vector<Chromosome> selection(const std::vector<Chromosome>& population, int tournamentSize) {
  43.     std::vector<Chromosome> selectedPopulation;
  44.     for (int i = 0; i < population.size(); i++) {
  45.         std::vector<int> tournamentIndices;
  46.         for (int j = 0; j < tournamentSize; j++) {
  47.             int index = rand() % population.size();
  48.             tournamentIndices.push采用back(index);
  49.         }
  50.         int maxFitness = -1;
  51.         int maxIndex = -1;
  52.         for (int j = 0; j < tournamentIndices.size(); j++) {
  53.             int index = tournamentIndices[j];
  54.             if (population[index].fitness > maxFitness) {
  55.                 maxFitness = population[index].fitness;
  56.                 maxIndex = index;
  57.             }
  58.         }
  59.         selectedPopulation.push采用back(population[maxIndex]);
  60.     }
  61.     return selectedPopulation;
  62. }
  63. // 交叉操作
  64. std::vector<Chromosome> crossover(const std::vector<Chromosome>& population, double crossoverRate) {
  65.     std::vector<Chromosome> offspringPopulation;
  66.     for (int i = 0; i < population.size(); i += 2) {
  67.         Chromosome parent1 = population[i];
  68.         Chromosome parent2 = population[i + 1];
  69.         Chromosome offspring1 = parent1;
  70.         Chromosome offspring2 = parent2;
  71.         if (rand() / double(RAND采用MAX) < crossoverRate) {
  72.             int crossoverPoint = rand() % parent1.genes.size();
  73.             for (int j = crossoverPoint; j < parent1.genes.size(); j++) {
  74.                 offspring1.genes[j] = parent2.genes[j];
  75.                 offspring2.genes[j] = parent1.genes[j];
  76.             }
  77.         }
  78.         offspringPopulation.push采用back(offspring1);
  79.         offspringPopulation.push采用back(offspring2);
  80.     }
  81.     return offspringPopulation;
  82. }
  83. // 变异操作
  84. void mutation(std::vector<Chromosome>& population, double mutationRate) {
  85.     for (int i = 0; i < population.size(); i++) {
  86.         for (int j = 0; j < population[i].genes.size(); j++) {
  87.             if (rand() / double(RAND采用MAX) < mutationRate) {
  88.                 population[i].genes[j] = 1 - population[i].genes[j]; // 变异
  89.             }
  90.         }
  91.     }
  92. }
  93. // 打印最优解
  94. void printBestSolution(const std::vector<Chromosome>& population, const std::vector<Material>& materials, int targetLength) {
  95.     int maxFitness = -1;
  96.     int maxIndex = -1;
  97.     for (int i = 0; i < population.size(); i++) {
  98.         if (population[i].fitness > maxFitness) {
  99.             maxFitness = population[i].fitness;
  100.             maxIndex = i;
  101.         }
  102.     }
  103.     std::cout << "Best solution: ";
  104.     for (int i = 0; i < population[maxIndex].genes.size(); i++) {
  105.         if (population[maxIndex].genes[i] == 1) {
  106.             std::cout << "Material " << i + 1 << " (Length: " << materials[i].length << ", Demand: " << materials[i].demand << ") ";
  107.         }
  108.     }
  109.     std::cout << std::endl;
  110.     std::cout << "Total Length: " << maxFitness << std::endl;
  111.     std::cout << "Target Length: " << targetLength << std::endl;
  112. }
  113. int main() {
  114.     // 定义材料和目标长度
  115.     std::vector<Material> materials = { {10, 5}, {15, 8}, {20, 10}, {25, 12} };
  116.     int targetLength = 50;
  117.     // 定义遗传算法的参数
  118.     int populationSize = 100;
  119.     int geneSize = materials.size();
  120.     int tournamentSize = 5;
  121.     double crossoverRate = 0.8;
  122.     double mutationRate = 0.01;
  123.     int maxGenerations = 100;
  124.     // 初始化种群
  125.     std::vector<Chromosome> population = initializePopulation(populationSize, geneSize);
  126.     // 迭代进化
  127.     for (int generation = 0; generation < maxGenerations; generation++) {
  128.         // 计算适应度
  129.         for (int i = 0; i < population.size(); i++) {
  130.             calculateFitness(population[i], materials, targetLength);
  131.         }
  132.         // 打印当前最优解
  133.         printBestSolution(population, materials, targetLength);
  134.         // 选择操作
  135.         std::vector<Chromosome> selectedPopulation = selection(population, tournamentSize);
  136.         // 交叉操作
  137.         std::vector<Chromosome> offspringPopulation = crossover(selectedPopulation, crossoverRate);
  138.         // 变异操作
  139.         mutation(offspringPopulation, mutationRate);
  140.         // 更新种群
  141.         population = offspringPopulation;
  142.     }
  143.     return 0;
  144. }
复制代码
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|膜结构网

GMT+8, 2024-12-28 13:46 , Processed in 0.135268 second(s), 23 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表