|
发表于 2024-7-4 23:24:57
|
显示全部楼层
- 在多边形碰撞检测中,一种常用的且较为高效的算法是分离轴定理(Separating Axis Theorem, SAT)。该算法的基本思想是,如果两个凸多边形在任意一个轴上投影有交集,则它们可能相交;如果存在至少一个轴,两多边形在该轴上的投影没有交集,则可以确定它们不相交。
- 以下是在C++中使用分离轴定理实现的`doPolygonsIntersect`函数的完整代码:
- ```cpp
- #include <iostream>
- #include <vector>
- #include <algorithm>
- // Define a point
- struct Point {
- double x, y;
- };
- // Define a polygon using a vector of points
- using Polygon = std::vector<Point>;
- // Compute the projection of a polygon onto an axis
- std::pair<double, double> projectPolygonOnAxis(const Polygon& polygon, const Point& axis) {
- double minProj = polygon.front().x * axis.x + polygon.front().y * axis.y;
- double maxProj = minProj;
- for (const auto& vertex : polygon) {
- double proj = vertex.x * axis.x + vertex.y * axis.y;
- minProj = std::min(minProj, proj);
- maxProj = std::max(maxProj, proj);
- }
- return {minProj, maxProj};
- }
- // Check if two projections overlap
- bool doProjectionsOverlap(const std::pair<double, double>& proj1, const std::pair<double, double>& proj2) {
- return std::max(proj1.first, proj2.first) <= std::min(proj1.second, proj2.second);
- }
- // Generate all edge normals for a polygon
- std::vector<Point> generateEdgeNormals(const Polygon& polygon) {
- std::vector<Point> normals;
- for (size_t i = 0; i < polygon.size(); ++i) {
- Point edge = {polygon[(i + 1) % polygon.size()].x - polygon[i].x,
- polygon[(i + 1) % polygon.size()].y - polygon[i].y};
- double length = std::sqrt(edge.x * edge.x + edge.y * edge.y);
- Point normal = {-edge.y / length, edge.x / length};
- normals.push_back(normal);
- }
- return normals;
- }
- // Check if two polygons intersect using the Separating Axis Theorem
- bool doPolygonsIntersect(const Polygon& poly1, const Polygon& poly2) {
- auto normals1 = generateEdgeNormals(poly1);
- auto normals2 = generateEdgeNormals(poly2);
- for (const auto& n : normals1) {
- auto proj1 = projectPolygonOnAxis(poly1, n);
- auto proj2 = projectPolygonOnAxis(poly2, n);
- if (!doProjectionsOverlap(proj1, proj2)) {
- return false;
- }
- }
- for (const auto& n : normals2) {
- auto proj1 = projectPolygonOnAxis(poly1, n);
- auto proj2 = projectPolygonOnAxis(poly2, n);
- if (!doProjectionsOverlap(proj1, proj2)) {
- return false;
- }
- }
- return true;
- }
- int main() {
- // Example polygons
- Polygon poly1 = {{0, 0}, {4, 0}, {4, 4}, {0, 4}};
- Polygon poly2 = {{3, 3}, {6, 3}, {6, 6}, {3, 6}};
- bool intersect = doPolygonsIntersect(poly1, poly2);
- std::cout << "Do the polygons intersect? " << (intersect ? "Yes" : "No") << std::endl;
- return 0;
- }
- ```
- 在这个代码中,`projectPolygonOnAxis`函数计算多边形在指定轴上的投影,`doProjectionsOverlap`函数检查两个投影是否重叠,`generateEdgeNormals`函数生成多边形所有边的法线向量。`doPolygonsIntersect`函数首先为每个多边形生成其所有边的法线,然后对每个法线进行投影并检查投影是否重叠。如果在所有法线中都找不到分离轴,则认为两个多边形相交。
- 请注意,此代码假设输入的多边形是凸的。如果多边形是非凸的,那么你可能需要使用更复杂的算法,例如将非凸多边形分解成凸多边形,然后分别检查每个凸多边形对之间是否相交。
复制代码 |
|